Representing information is fundamental to computer science. The primary purpose of most computer programs is not to perform calculations, but to store and retrieve informationâ€”usually as fast as possible. For this reason, the study of data structures and the algorithms that manipulate them is at the heart of computer science. And that is what this book is aboutâ€”helping you to understand how to structure information to support efficient processing.

Any course on Data Structures and Algorithms will try to teach you about three things:

- It will present a collection of commonly used data structures and algorithms. These form a programmer's basic "toolkit". For many problems, some data structure or algorithm in the toolkit will provide a good solution. We focus on data structures and algorithms that have proven over time to be most useful.
- It will introduce the idea of tradeoffs, and reinforce the concept that there are costs and benefits associated with every data structure or algorithm. This is done by describing, for each data structure, the amount of space and time required for typical operations. For each algorithm, we examine the time required for key input types.
- It will teach you how to measure the effectiveness of a data structure or algorithm. Only through such measurement can you determine which data structure in your toolkit is most appropriate for a new problem. The techniques presented also allow you to judge the merits of new data structures that you or others might invent.

There are often many approaches to solving a problem. How do we choose between them? At the heart of computer program design are two (sometimes conflicting) goals:

- To design an algorithm that is easy to understand, code, and debug.
- To design an algorithm that makes efficient use of the computer's resources.

- Teacher: Adrian B. Martin